Supply and Ground Bounce

Updated on 2017/12/03 23:08

 

Supply and Ground Bounce

Ground bounce is usually seen on high density VLSI where insufficient precautions have been taken to supply a logic gate with a sufficiently low resistance connection (or sufficiently high capacitance) to ground. In this phenomenon, when the gate is turned on, enough current flows through the emitter-collector circuit that the silicon in the immediate vicinity of the emitter is pulled high, sometimes by several volts, thus raising the local ground, as perceived by the transistor, to a value significantly above true ground. Relative to this local ground, the base voltage can go negative, thus shutting off the transistor. As the excess local charge dissipates, the transistor turns back on, possibly causing a repeat of the phenomenon, sometimes up to a half-dozen bounces.

Ground bounce is one of the leading causes of "hung" or metastable gates in modern digital circuit design. This happens because the ground bounce puts the input of a flip flop effectively at voltage level that is neither a one nor a zero at clock time, or causes untoward effects in the clock itself. A similar phenomenon may be seen on the collector side, called VCC sag, where VCC is pulled unnaturally low. As a whole, ground bounce is a major issue in nanometer range technologies in VLSI.

Ground bounce can also occur when the circuit board has poorly designed ground paths. Improper ground or VCC can lead to local variations in the ground level between various components. This most commonly seen in circuit boards that have ground and VCC paths on the surfaces of the board.

1502091152500-100.png

References

  • WikiNote Foundation
Tags:
Created by Vishal E on 2017/12/03 23:08
Translated into en by Vishal E on 2017/12/03 23:08